M463 Homework 9

Enrique Areyan
 July 3, 2013

Suppose a fair die is rolled 300 times. For each $i, 1 \leq i \leq 300$, let X_{i} be the indicator of a six coming up on the i th roll, that is:

$$
X_{i}=\left\{\begin{array}{l}
1 \text { if the result of the } i \text { th roll was a six } \\
0 \text { otherwise }
\end{array}\right.
$$

Use the linearity of expected value to evaluate $E\left(X_{1}+X_{2}+X_{3}+\cdots+X_{300}\right)$

Solution:

First note that the distribution of X_{i} is $P\left(X_{i}=1\right)=\frac{1}{6}$ and $P\left(X_{i}=0\right)=\frac{5}{6}$ for any $i, 1 \leq i \leq 300$. In other words, X_{i} is a Bernoulli trial with probability of success $p=\frac{1}{6}$. Therefore:

$$
E\left(X_{i}\right)=\sum_{\text {all } x} x \cdot P(X=x)=\sum_{0}^{1} x \cdot P(X=x)=0 \cdot \frac{5}{6}+1 \cdot \frac{1}{6}=\frac{1}{6}
$$

Using the linearity of expected value we can evaluate the following:

$$
\begin{aligned}
E\left(X_{1}+X_{2}+X_{3}+\cdots+X_{300}\right) & =E\left(X_{1}\right)+E\left(X_{2}\right)+E\left(X_{3}\right)+\cdots+E\left(X_{300}\right) \\
& =\frac{1}{6}+\frac{1}{6}+\cdots+\frac{1}{6} \\
& =\frac{300}{6} \\
& =50
\end{aligned}
$$

This is consistent with the fact that these 300 trials can be modeled with a Binomial distribution as follow: Let $Y=X_{1}+X_{2}+\cdots+X_{300}$, where $Y \sim \operatorname{Binomial}(n=300, p=1 / 6)$. Hence, $E(Y)=n p=\frac{300}{6}=50$

